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Abstract

In this paper the mathematical model of combat vehicle as well as mathematical models of input function 
generated by the cannon during firing and terrain unevenness was presented. This model enables the analysis of 
dynamic loads of the equipment mounted inside combat vehicle as well as analysis of dynamic loads of the crew. 
Parameters of the impulse forces acting on the vehicle during firing were determined on the theoretical basics of 
internal ballistic of cannon. The results of calculation were presented for hypothetical basic combat vehicle with a 125 
mm and 73 mm calibre smoothbore gun. Firing during short stops and during combat vehicle motion at different 
speeds on terrain unevenness as well as angle of elevation of the gun barrel and rotation angle of the turret on the 
level of dynamic load were considered.    
 A part of this paper was presented at the RTO AVT Symposium on "Functional and Mechanical Integration of 
Weapons and Land and Air Vehicles". 
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1. Introduction 

Despite various opinions, experiences in past and present armed conflicts confirm the 
assumption that combat vehicles are still the elementary means of combat of Land Forces. The 
effectiveness of the combat vehicle is characterized by its three principle properties: 

firepower,
armour, 
mobility.

During maintenance combat vehicles are subjected to constant modernization. The aim of 
modernization results from the necessity of upgrading the equipment or even the necessity of 
adapting them to the standard of allied forces’ equipment. There is a need to possess suitable 
methods as well as testing tools, which would allow evaluating effects of conducted changes and 
properties of the new (modernized) structure at the stage of designing or modernization of combat 
vehicles. At the Institute of Motor Vehicle and Transportation MUT, research studies have been  
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carried out for many years in this area. The presented study is closely connected with directions of 
these tests. 

Its main aim is to conduct a method of testing the dynamic load of the combat vehicle during 
firing from the mounted weapon and especially from the cannon being the main weapon. The gun 
barrel is connected to the fitted cradle in the turret by the recoil and counterrecoil mechanism. 
During firing force impulses are generated (with an intensity of a few hundred kN), which by the 
pivot cradle are transferred to the turret and then on to the support structure (frame) of the combat 
vehicle. The magnitude of these forces as well as the effect of their interaction depends on the type 
and structure of the armaments (cannons), the type of ammunition used as well as firing 
conditions, i.e. the angle, in which the cannon is lifted; the rotation angle of the turret as well as 
driving conditions of the combat vehicle (terrain, speed). 

2. Mathematical model of the interaction of the cannon with the combat vehicle 

2.1.  Introductory notes 

The gun barrel is positioned in the cradle, which through the pivot rests in the combat vehicle 
turret. The barrel is connected with the cradle by the recoil and counterrecoil mechanism. After 
firing, in the period of recoiling and returning to the output position, the barrel moves on rails of 
the cradle. The resultant force acting on the cannon recoiling assembly during firing transfers by 
the motionless parts of the recoiling and counterrecoiling mechanism on to the cradle and then 
through its pivot to the turret and the combat vehicle chassis. During recoiling the squeezing of the 
springs or the compression of air in the recoil and counterrecoil mechanism takes place, in which 
energy is accumulated. After the recoil finishes the recoiling assembly is shifted back to the 
position before firing. During further considerations the force causing the return of the recoiling 
assembly will be omitted. It comprises of 10-20% of the force resistance value and its interaction 
with the combat vehicle is inconsiderable. 

2.2.  Recoil force resistance 

The recoil force resistance R is a variable in time. The precise determination of its course 
requires the consideration of complex physical processes taking place during firing. For practical 
aims a simplified theory of internal ballistics is used that consists of determining the substitute 
force in the form of a rectangular pulse with a value and duration, so that its interaction with the 
combat vehicle would have an exact effect as the action of the real force. 
With the above-mentioned assumptions in mind the value of the recoil R force is determined from 
the Vallier formula [4]. 
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where:
R – recoil force resistance,  

maxv  – maximum velocity of the free recoil (at R = 0), 

maxL  – maximum recoil path, 

kL  – free recoil path (at R = 0), 

pt  – duration of gunpowder gases exhaust activity, 

pM  – projectile mass, 

ov   – initial velocity of the projectile, 

mm  – mass of propellant charge, 

oM  – mass of recoiling assembly, 
  – activity of gunpowder gases factor (according to Rheinmetall [3]). 

Magnitudes required to determine the R force from the equation (1) are determined using the 
theoretical basics of internal ballistics. Based on this theory the duration of the impulse is also 
determined. 

3. Combat vehicle model 

3.1. Basic assumptions 
The crawler vehicle, as a combat vehicle is, is a complex dynamic system with a high degree of 

freedom of movement. The mathematical analysis of such a complex system is very intricate. That 
is why the analysis of the model has been limited to the following vehicle vibrations: 

vertical vibrations of the body, 
angular vibrations of the body in a longitudinal plane, 
angular vibrations of the body in a diagonal plane, 
angular vibrations of armament (cannon), 
vertical and angular vibrations of seats for the crew. 

Working out the vehicle model, the following simplifying assumptions were established: 
self-supporting vehicle body along with the turret is a rigid body with a known mass and mass 
moments of inertia, 
the interaction of caterpillar treads on the frame were omitted, 
characteristics of elasticity of components and damping of the suspension can be accepted as 
linear or non-linear, 
kinematics input function is specified for the axles of wheels; after the exhaustion of the 
suspension dynamic bend additional components start to operate (wheel jump limiters), 
the diagonal and longitudinal displacement of the frame were omitted as well as its rotational 
motion in relation to the vertical axle, 
the seat for the crew are treated as rigid bodies supported by elastic and damping components, 
the constraints applied on the system are holonomic, independent of time and bilateral. 

3.2. Combat vehicle mathematical model 

The discrete combat vehicle model is presented in fig.1. The rigid body of combat vehicle 
(frame with turret and cannon) supported by elastic and damping components mapping turning 
shaft and the shock absorber as well as the rigid bodies modelling the seats for the crew are 
distinguishable in the model, each supported in relation to the frame on for elastic and damping 
components. 
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Fig. 1. Discrete combat vehicle model scheme 

 The base stiffness was taken into consideration in the model, which allowed more precise 
mapping of occurrences taking place during the exhaustion of the dynamic jump of the wheels. 
Accepting linear characteristics of suspension components in the combat vehicle model is a big 
simplification. This results, among others, from the fact that at a linear characteristic of the turning 
shaft elasticity when using the equalizer spring causes an occurrence of the so-called geometric 
non-linearity. That is why the suspension stiffness factor k was determined by the following 
dependency:
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where:

G  – the Kirchhoff module of the turn shaft material,  
oI   – polar moment of inertia of the turn shaft diagonal intersection, 

l  – active length of the turn shaft,  
st   – static bend angle of the equalizer spring,  
  – current bend angle from the static equilibrium position,  

o  – equalizer spring assembly angle,  
r – turn shaft radius. 

The equation (4) is apt until the moment of exhaustion of the dynamic jump of the wheels. 
Then an impact occurs of the equalizer spring on the limiter of high stiffness, which means, that 
the elastic and damping components do not undergo further deformation. It is assumed in the 
proposed calculation model, that at the moment of impact of the suspension against the propulsion 
system, they form one rigid body supported by elastic components, which are rubber bands for the 
wheels and a deformable base [1]. 
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The substitute stiffness factor of the elastic component connection series modelling the wheels 
rubber band and the elastic components modelling the plane (ground) were determined from the 
following dependency: 
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where:

1k  – ground stiffness,

2k  – rubber band stiffness. 

Ground stiffness was determined by the following dependency: 
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whereas the rubber band stiffness with the following expression: 
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where:

Eo – Young module for the ground,  
 – caterpillar tread shape factor,  

B – caterpillar tread width,
v – ground side expansion factor,  
E – Young module for rubber,  
h – rubber band height,
b – rubber band width,

1r   – wheel radius along with band. 

The adopted ground model includes its elastic properties in both directions (vertical and 
horizontal) and its values depend on the type of ground (coherence modulus and internal friction 
modulus), its density and moisture. The factor describing the ground parameters were accepted for 
static conditions, because its change in case of dynamic interaction has a slight impact on the test 
results.
The equation of non-linear motion was formed in an increment linear version at an incrementation 
step used in non-linear mechanics. They take the following form [2]: 

QqKqCqM , (8)
where:

M  – inertia matrix,  
C  – damping matrix,  
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K  – stiffness matrix,  
Q  – vector increment of generalized external forces,  
q , ,  – accordingly: vector increment of generalized acceleration, speed and relocation in 

the given integration step. 
q q

The occurrence of the stiffness and damping factors in the matrix are calculated for each 
incrementation step depending on the bending of the wheel as well as wheel speed in relation to 
the frame. 
A computer program was designed for the analysis of vibrations of the crawler vehicle. This 
program enables: 

determining the frequency and the form of free vibration, 
analysis of forced vibrations, 
elaborating amplitude and frequency characteristics. 

Model testing can be carried out at a specified driving speed and defined forced parameters for the 
following driving conditions: 

driving over a single V-block, 
driving on a sinusoidal track, 
driving on a track of random characteristics. 
In each case, an additional force input function may act on the vehicle from the cannon recoil force

applied at the place where it is fixed (cannon pivot). 
For integrating the equation of motion, specifying the combat vehicle model vibration, the direct 

integration Newmark method was used. 

3.3. Force model 

3.3.1. Kinematics force of random distribution 
Generating kinematics force of random distribution acting on the wheels of the vehicle carry 

out based on assigned spectral concentration characteristics. The execution of force is based on the 
assumption that the stationary, centralized process of normal distribution can be presented in the 
form of an infinite sum of harmonics [9]. 

1k
kkk )tcos(Az(t) ,                                                  (9) 

where:

kA  – k harmonic amplitude,  

k  – k harmonic phase angle (random variable of uniform distribution in an interval of <0,2 >).

The path profile, on which the vehicle moves, can be interpreted as a sum of waves of different 
lengths and of random variable phases [5]. Waves of lengths exceeding more than 100 m create a 
so-called macro-profile. It has an essential impact on the vehicle dynamics, however its impact on 
vehicle vibration is minimal, because of a very low frequency. Because the caterpillar system is 
not capable of projecting irregularity of small lengths, waves of lengths smaller than 0.1 m (so-
called surface roughness) also is not taken into consideration in the vehicle vibration analysis. So 
the subject of numerical testing was only the profile of the path, consisting of irregular waves of 
lengths in an interval of 0.1 – 100 m. 

Based on this as well as introducing the idea of spectral density Gw( ) the following can be 
written:
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N
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In numerical usage, usually the estimated specification of the spectral density of path irregularity is 
used. In study [7] the following dependency is suggested: 
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where:

o     -  wheeled frequency relation,

owG   -  path irregularity indicator, from which it can be concluded whether the path is 
generally good or poor,

w    - waviness indicator, informing whether short waves or long waves have a 
dominating impact in the spectrum. 

The final equation (9) after considering the above dependencies will look like the following: 
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Presented in table 1 are the average accepted values for specifying the spectral concentration 
power of path irregularity depending on the different conditions of the path surface of dirt roads 
for the frequency relation of o= 1 m-1 [7]. 

Tab. 1. Average values for specifying the power spectral density of path irregularity for different conditions of dirt 
road pavement 

Average values 
Path type Pavement condition 

(subjective evaluation) w Gw( o) [cm³] 

Good 2.25 32

Average 2.25 155

Poor 2.14 602
Dirt road 

Very poor 2.14 16300

Presented in fig. 2 is an example of the execution of the kinematics force applied to the wheels 
of a vehicle moving at a speed of 30 kmph on a dirt road of an average surface condition. 

3.3.2. Force input function 

The crawler vehicle model can be also loaded with force from the recoil of the cannon resulting 
from a shot. Based on considerations included in chapter 2, input function was accepted as a 
rectangular course presented in fig. 3. The characteristic magnitudes needed to conduct 
calculations are: 
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recoil force R determined from dependence of (1), 
initial time to (shot fired), 
terminal time tk.
The difference tk – to  is the duration of force impulse. The R recoil force is applied at the place 

were the cannon pivots are fixed. The duration of recoil force impulse and its value for different 
kind of cannon are presented in table 2. 

Fig. 2: Example of executing kinematics force 

Tab. 2. The values of recoil force impulse 

Type of cannon Combat vehicle Recoil force [kN] Duration of recoil 
force [ms] 

125 mm cannon 2A46 T-72, PT-91, T-80 524 56

100 mm cannon D10-TG T-55, T-54 280 78

73 mm cannon 2A28 BMP-1 126 123

A change in direction is possible as well as the return recoil force activity by: 
changing the angle of the cannon A,
changing the rotation angle of the turret W.

Fig. 3. Course of the recoil force applied on the vehicle during firing 
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4. Simulation tests 

4.1. Range of testing 

The dynamic load of the combat vehicle was examined in the study, being the result of the 
input function from the recoil force of the combat vehicle cannon, as well as the kinematics input 
function caused by motion over irregular terrain. Calculations were conducted for two type of 
vehicle – the first one with 125 mm cannon (tank) and the second one with 73 mm cannon (combat 
infantry carrier). The simulation was carried out during vehicle standstill as well as motion over a 
dirt road of an average condition at a speed of 7 and 30 kmph. The selection of speed values 
resulted from the characteristics of basic types of activity carried out on the battlefield (average 
attack speed of infantry “on foot” as well as average combat vehicle motion speed in the terrain). 

4.2. Test results of the model 

In the model tests, the vertical acceleration acting on the driver and the vehicle centre of mass 
as well as the frame angular acceleration in relation to transverse axis were stated during a 
simulated fire from the combat vehicle cannon preformed moving on a irregular terrain with 
parameters: Gw( o) = 155 cm³, w = 2.25. 

On figures 4 – 6 exemplary time courses of vertical acceleration of the driver’s seat and the 
centre of mass of the vehicle are presented as well as angular acceleration in relation to its 
transverse axis. A sudden impulsive rise in acceleration at the moment of firing can be observed on 
these charts (4 seconds). Through analysis of these courses it can also be ascertained that the driver 
is submitted to approximately twice greater dynamic load in comparison to the rest of the crew 
members found in the inner part of the vehicle, this is caused by the considerable distance of the 
driver from the combat vehicle’s centre of mass. 

Fig. 4. Vehicle centre of mass vertical acceleration during firing and driving at a speed of v=7 kmph over terrain 
irregularity of parameters: Gw( o) = 155 cm³, w = 2.25 
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Fig. 5. Vehicle angular acceleration during firing and driving at a speed of v=7 kmph over terrain irregularity of 
parameters: Gw( o) = 155 cm³, w = 2.25 

Fig. 6. Driver’s seat vertical acceleration at a speed of v=7 kmph over terrain irregularity of parameters: 
 Gw( o) = 155 cm³, w = 2.25 

Maximum values of vertical acceleration of the driver’s seat as well as angular acceleration of 
the combat vehicle frame in relation to the transverse axis are presented in fig. 7 – 10. These 
accelerations a presented in the function of turret rotation angle for three cannon elevation angles: 
0º, 7.5º and 15º (for a tank) and 0º, 15º and 30º (for a combat infantry carrier). 

From the curves on the figure, a dependency of acceleration values from both the turret rotation 
angle and the cannon barrel elevation angle can be observed. The centre of mass vertical 
acceleration at a considerably small degree depends on the position of the turret with the cannon 
during firing. This results from a slight difference of the position of the centre of mass and the 
cannon pivots, on which the recoil force directly acts. In the range of the conducted tests the 
changes in centre of mass vertical acceleration values did not exceed the value of 1m/s² and  
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therefore these values are not presented in the chart. Acceleration values generated during firing 
are not very great and do not influence in an essential way on the operation conditions of the 
combat vehicle crew. 
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Fig. 7. Maximum values of vertical acceleration of the driver’s seat – tank 
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Fig. 8. Maximum values of angular acceleration in relation to the transverse axis – tank 
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Fig. 9. Maximum values of vertical acceleration of the driver’s seat – combat infantry carrier 
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Fig. 10. Maximum values of angular acceleration in relation to the transverse axis – combat infantry carrier 

Though forces generated during firing have an essential impact on the dynamic load of the 
combat vehicle support structure as well as its assemblies, this fact should be in mind during 
modernisation of combat vehicles especially during changing of armaments. 
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5. Conclusion 

The achieved test results have a cognitive aspect as well as a practical meaning. No results of 
this type of test are published. 

The knowledge of dynamic interaction created during motion and firing enables the evaluation 
of their impact on equipping the combat vehicle, the accuracy of conducting fire as well as 
working conditions of the crew. The analysis of these interactions can also be the basis for stating 
the direction of modernisation. 

The presented testing methodology in this study as well as the created specialised programs for 
simulation testing at the Institute can be used by the technical back-up in charge of designing or 
modernising combat vehicles or constructing specialised vehicles on their chassis. 
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